Если у вас не прогружаются какие-то фотографии / картинки / чертежи, тогда рекомендуем использовать VPN сервисы!
Показаны сообщения с ярлыком ГЭУ. Показать все сообщения
Показаны сообщения с ярлыком ГЭУ. Показать все сообщения

07.10.2020

Гребные электрические установки двойного рода тока с управляемыми выпрямителями

Основное преимущество ГЭУ двойного рода тока с управляемыми выпрямителями состоит в возможности использования единой судовой электростанции для питания ГЭД через управляемый выпрямитель (система УВ — Д) и питания остальных потребителей судна.

На современных судах количество и мощность потребителей электроэнергии увеличиваются, причем мощность судовой электростанции становится соизмеримой с мощностью тепловых двигателей, приводящих в действие гребные винты. На судах большинства типов потребление электроэнергии на ходу судна значительно меньше, чем на стоянке при производстве грузовых операций. Бывают режимы, когда максимальный расход электроэнергии приходится на время малого хода судна, что характерно для рыбопромысловых судов. ГЭУ с единой электростанцией и ГЭД, включенным по системе УВ — Д, позволяют уменьшить число агрегатов и размеры машинного отделения, обеспечивают полную загрузку генераторных агрегатов на ходу и на стоянке, обладают высокой живучестью и надежностью.

Генераторы работают на шины ГРЩ при неизменной частоте и напряжении. Частота вращения ГЭД постоянного тока регулируется изменением напряжения на выходе управляемого выпрямителя (УВ), а реверс осушествляется переключением обмотки возбуждения ГЭД.

Количество судов с использованием ГЭУ с единой электростанцией и ГЭД, включенным по системе УВ — Д, с каждым годом увеличивается. Такие установки представлены судами различных типов: ледоколами, паромами, цементовозами, траулерами, научно-исследовательскими судами и т. п.

01.10.2020

Конструкция и эксплуатация главных электрических машин на судне

Главные генераторы и ГЭД, как и все электрооборудование морского исполнения, должны надежно работать в условиях постоянной вибрации корпуса и частых сотрясений при ударах о лед, повышенной температуры и влажности окружающего воздуха, длительной качки судна, крена и дифферента. Значения этих величин, характеризующих условия работы электрооборудования на судах, установлены Правилами Регистра. Исполнение корпуса главных электрических машин должно обеспечивать надежную работу при наличии в окружающем воздухе паров воды, масла и топлива, а также при попадании на корпус брызг.

Главные генераторы постоянного тока в большинстве своем создаются на базе машин серийного исполнения, так как подобные дизель-генераторы устанавливаются на тепловозах. Морское исполнение предусматривает некоторые конструктивные изменения и снижение номинальной мощности для увеличения срока службы.

Сердечники якоря и главных полюсов изготавливают из листовой электротехнической стали, сердечники дополнительных полюсов — из литой стали. На главных полюсах размещается независимая обмотка, которая получает питание от возбудителя. В некоторых случаях на главных полюсах находится размагничивающая обмотка, включенная последовательно с обмоткой якоря.

28.09.2020

Системы автоматического регулирования ГЭУ постоянного тока

Регулирование частоты вращения ГЭД, реверсирование, получение механических характеристик определенного вида, сглаживание бросков тока в переходных режимах производятся изменением токов возбуждения генераторов и ГЭД. Обмотки возбуждения получают питание от возбудителей, а регулирование производится в цепях возбуждения возбудителей.

В ГЭУ постоянного тока в зависимости от принципов регулирования и управления применяются системы неизменного напряжения, неизменного тока и система генератор — двигатель (Г — Д).

Система неизменного напряжения. Применяется в установках малой мощности, где от генераторов, работающих в параллель, получают питание гребные электродвигатели и другие потребители. В качестве генераторов применяются компаундные машины, которые поддерживают постоянство напряжения на шинах при изменении нагрузки.

Характеристика и требования к ГЭУ постоянного тока

Первичными двигателями генераторов постоянного тока обычно бывают дизели с частотой вращения 700—1500 об/мин и мощностью 800 — 2400 кВт. Такая установка носит название дизель-электрической гребной установки. Так как мощность дизель-генератора ограничена, на гребной электродвигатель подается суммарная мощность нескольких генераторов при последовательном соединении машин. Наиболее распространена схема регулирования ГЭУ по системе генератор — двигатель.

По Правилам Регистра дизели должны допускать работу с перегрузкой не менее 10% номинальной мощности в течение 1 ч. Дизель должен иметь топливный регулятор, не допускающий превышения частоты вращения более чем на 10%; при этом должна снижаться подача топлива, однако остановка дизеля не допускается. 

Остановка дизеля (отсечка топлива) должна производиться при превышении расчетной частоты вращения более чем на 20%. Для запуска дизеля используется воздушный или стартерный пуск. На большинстве дизель-электроходов используется воздушный пуск, а на буксирах-спасателях типа «Атлант» и «Голиаф» — стартерный, причем стартером служит генератор в режиме сериесного двигателя. Напряжение на выводах генератора или ГЭД, а также между двумя любыми точками главной цепи не должно превышать 1200 В. Напряжение цепей возбуждения, управления, сигнализации и защиты не должно превышать 220 В.

22.09.2020

Схемы управления тиристорами. Фазосдвигающее устройство

На рис. 1 показаны простейшие экономичные схемы управления тиристорами. Наиболее простой метод включения тиристора представлен на рис. 1, а, где в качестве необходимого для включения управляющего тока используется часть тока, проходящего через тиристор. В разомкнутом состоянии контакта К тиристор не может открыться, так как на управляющий электрод не подается положительный потенциал. 

При замыкании контакта К в положительный полупериод анодного напряжения через резисторы R1 и R2 и диод Д протекает ток управления. Сила этого тока зависит от мгновенного значения анодного напряжения, которое увеличивается от нуля до максимального значения. Ток управления достигнет необходимого для включения тиристора значения при определенном угле а. Если уменьшить сопротивление реостата R2, угол управления а станет меньше, так как ток управления достигнет необходимого значения при меньшем анодном напряжении. 

При полностью введенном реостате R угол управления а достигнет максимального значения, которое не может превысить 90°, так как максимальное анодное напряжение обеспечивает максимальный ток управления. Приведенная схема может работать на постоянном токе. 

Тиристор может открыться при подаче на анод положительного полюса напряжения. Реостатом R2 устанавливается ток управления необходимой силы. Однако для закрывания тиристора необходимо шунтировать перемычкой или прервать цепь анодного тока.

23.08.2020

Перспективы развития гребных электрических установок

Развитие ГЭУ и их широкое применение на судах задерживаются из-за большой массы и стоимости всего оборудования энергетической установки судна. В настоящее время во многих странах создаются опытные образцы электрических машин сверхпроводимости, которые работают при температурах, близких к абсолютному нулю, и позволяют, уменьшая омическое сопротивление обмоток, снизить массу и габариты электрических машин в 4-6 раз.

В США проводятся испытания синхронного генератора сверхпроводимости мощностью 5 тыс. кВ-А, продольный разрез которого приведен на рис. 1. Машина имеет такой же внешний вид и габариты как обычный генератор на 1,2 тыс. кВ-А. Специалисты считают, что максимальная мощность может достигнуть 15 тыс. кВ-А. Приблизительная масса составляет 4500 кг, длина около 2,9 м, диаметр 1,2 м, напряжение 4160 В, ток возбуждения 890 А, к. п. д. 98,5%.

Продольный разрез генератора сверхпроводимости мощностью 5 тыс. кВ-А

Рис. 1. Продольный разрез генератора сверхпроводимости мощностью 5 тыс. кВ-А

Жидкий гелий при температуре -269 °С подводится по оси ротора через трубопровод 11 из нержавеющей стали, поток охлаждающего гелия 13 проходит внутри ротора через обмотку 4, стальной экран 5, мимо обмоток статора 14, смешивается и выходит в виде газа и жидкости через трубопровод. 6. Ротор вращается в подшипниках 2 и 8 и соединительной муфтой 1 приводится во вращение от первичного двигателя. Питание на обмотку возбуждения подается через щетки и кольца 9 и подводящий кабель 7, ввод возбуждения производится через выводы 12. Вращающий момент от первичного двигателя к ротору передается через массивную муфту 3. Утечка жидкого гелия передается в систему 10.

Преимущества и недостатки дизель-электрической гребной установки

В современном мировом транспортном флоте наибольшее распространение получили суда с дизельным приводом гребного винта, а среди электроходов - ГЭУ постоянного тока. Для выявления преимуществ и недостатков тех и других установок следует сделать сравнение дизель-электроходов постоянного тока и теплоходов. В результате длительной эксплуатации электроходов выявлены преимущества ГЭУ постоянного тока по сравнению с теплоходами.

1. Возможность автоматизации гребной установки. На всех электроходах применяется дистанционное управление с нескольких мест, автоматически поддерживается постоянство мощности при изменении нагрузки на винте, применяются всевозможные автоматические системы защит и контроля за нарушением нормального режима эксплуатации. В конечном счете на электроходе проще осуществить комплексную автоматизацию всех производственных процессов в машинном отделении.

В последние годы на теплоходах используется дистанционное автоматизированное управление дизелем ДАУ и автоматическое управление процессами в машинном отделении, однако все это удалось осуществить на определенном уровне развития электроники и автоматики. Отбор мощности на уровне, близком к 100%, при изменении скорости судна возможен на теплоходе при использовании ВРШ.

Сравнение ГЭУ переменного, постоянного и двойного рода тока

Достоинства установок переменного тока:

1. Простота и надежность машин переменного тока и, как следствие, легкость обслуживания установок. Щеточный аппарат синхронных машин не вызывает затруднений при эксплуатации. Из опыта эксплуатации электроходов постоянного тока вытекает, что основной объем профилактических ремонтов связан с уходом за коллекторами и щеточным аппаратом главных электрических машин. Сопротивление изоляции машин постоянного тока трудно поддерживать в пределах нормы, так как загрязнение внутренних полостей машины угольной пылью приводит к снижению сопротивления изоляции.

На новейших электроходах применяются бесщеточные синхронные генераторы. В этих машинах требуют ухода только подшипники. Таким образом, возможности для сокращения обслуживающего персонала на электроходах переменного тока больше, чем на судах с ГЭУ постоянного тока.

2. Возможность применения более высокооборотных генераторных aгрегатов. Частота вращения синхронных генераторов ограничивается механической прочностью ротора и подшипников. Турбогенераторы имеют номинальную частоту вращения 3500 /мин. Частота вращения дизель-генераторов переменного тока ограничивается только предельной частотой вращения дизелей. 

Выбор частоты вращения генератора постоянного тока связан не только с возможностями первичного двигателя, но и с необходимостью обеспечения безыскровой работы коллектора.

На атомоходе ТЗА приводит во вращение четыре генератора постоянного тока с номинальной частотой вращения 595 об/мин, причем наличие зубчатой передачи между турбиной и генераторами увеличивает массу, стоимость, габариты и снижает надежность и к.п.д. установки.

06.08.2020

Качественные показатели гребных электрических установок

Классификация ГЭУ. ГЭУ различаются по типу первичного двигателя и способу получения электроэнергии. По типу первичного двигателя ГЭУ подразделяются на дизель-электрические (ДЭГУ) и турбоэлектрические (ТЭГУ), причем последние могут быть с паровыми или газовыми турбинами. На малых судах, работающих в акватории порта, находят широкое применение ГЭУ с аккумуляторным питанием, которые гарантируют незагрязнение среды.

В отдельных случаях используются комбинированные ГЭУ, где гребной винт приводится во вращение не только электродвигателем, но и тепловым двигателем. Самой мощной установкой такою типа является ледокол «Полар Стар», построенный в США в 1974 г. Расположение элементов установки этого ледокола показано на рис. 1. Водоизмещение ледокола 12,5 тыс. т. Три ВРШ могут приводиться во вращение от трех ГЭД постоянного тока 1 мощностью по 4500 кВт, напряжением 900 В при частоте вращения 105 — 130 об/мин. ГЭД получают питание через неуправляемые выпрямители от шести синхронных генераторов 4 мощностью по 2600 кВа.

Для вспомогательных нужд предусмотрено три синхронных генепатора мощностью по 937 кВа. Электродвижение осуществляется при работе двух генераторов на один ГЭД, при этом судно развивает ход 16 уз. В режиме электродвижения газовые турбины 3 редукторами 2 разобщаются от ГЭД. При работе судна в тяжелом льду запускаются газовые турбины мощностью по 19 тыс. кВт и через редукторы приводят во вращение винты; ГЭД в это время проворачиваются вхолостую.

05.08.2020

Характеристики тепловых двигателей

Дизели. Для движения морских судов чаще всего используются двигатели внутреннего сгорания с воспламенением от сжатия — дизели, так как по сравнению с остальными тепловыми двигателями они имеют наиболее высокий к. п.д. при сравнительно дешевом топливе. Мощность и частота вращения дизеля регулируются изменением количества подаваемого в цилиндры топлива и воздуха.

Зависимости момента вращения двигателя и эффективной мощности Ре на валу от частоты вращения Ме=f1(ne), Ре=f2(ne) при длительно допустимой наибольшей подаче топлива называются внешними характеристиками (рис. 1). Дизели допускают кратковременную перегрузку по мощности на 10% при увеличенной подаче топлива. Характеристики, соответствующие перегрузке, показаны штриховыми линиями, а характеристики, соответствующие меньшей подаче топлива,— сплошными и называются частичными характеристиками.

04.08.2020

Механические характеристики гребного винта

Механической характеристикой гребного винта (ВФШ) называется зависимость вращающего момента от частоты вращения при неизменной скорости судна.

Подобные характеристики снимают опытным путем либо рассчитывают по данным гребного винта.

Полученные зависимости близки к квадратичным параболам. Каждой скорости судна соответствует своя кривая (рис. 1): 1 - зависимость вращающего момента (или момента сопротивления) от частоты вращения на полном ходу судна в свободной воде Мсв = f1(n), т.е. на гладкой поверхности воды без встречного ветра; 2 - одна из промежуточных характеристик Мпр = f2(n) при пониженной скорости судна вследствие ледовой обстановки или по другим причинам; 3 - швартовная характеристика гребного винта Мшв = f3(n) при неподвижном судне, т. е. если судно при работающем двигателе стоит во льду или пришвартовано; 4 — механическая характеристика при работе в шуге («ледяная каша») Мш = f4(n).

С увеличением скорости судна растет скорость встречного потока воды относительно корпуса. Встречный поток воды подкручивает винт, поэтому при номинальном вращающем моменте Л/н с увеличением скорости хода растет частота вращения винта, что ясно из сравнения характеристик на рис. 6. При работе гребного винта в шуге момент сопротивления может оказаться больше, чем при швартовном режиме, так как возрастает вязкость среды, в которой работает винт, и, следовательно, сила лобового сопротивления (см. рис. 3).

Элементы теории судна и гребных электрических установок

Движение судна и движители. Для движения судна необходимо иметь двигатель и движитель. Двигатель преобразует тепловую или электрическую энергию в энергию вращения вала. 

Движитель, используя вращение двигателя, создает силу, способную передвигать судно. Для передвижения по воде применяются движители различных типов: шест, весло, парус, гребное колесо, гребной винт, крыльчатый движитель, водомет и др. Наибольшее распространение: в настоящее время имеет гребной винт.

Сопротивление движению судна. Для приведения судна в движение к нему должна быть приложена в диаметральной плоскости движущая сила измеряемая в ньютонах (Н). При горизонтальном равномерном и прямо линейном движении со скоростью v (м/с) движущая сила будет равна сумме сил сопротивления движению R (Н). Мощность, необходимая для преодоления силы полного сопротивления, называется буксировочной мощностью. Буксировочная мощность измеряется в киловаттах (кВт) и определяется выражением: Р = Rv/1000.

Полное сопротивление движению судна состоит из сопротивления трения, вихревого и волнового сопротивлений и сопротивления воздуха.

12.07.2017

Механические характеристики и автоматическое регулирование ГЭУ постоянного тока

При выборе мощности и частоты вращения гребного электродвигателя на основании гидродинамических расчетов строят механические характеристики гребного винта М = f (n).

Механическая характеристика зависит от загрузки судна и района плавания. При практических расчетах с достаточной степенью точности можно считать характеристики винтов аналогичными характеристикам вентиляторов:
где k — коэффициент пропорциональности, зависящий от сопротивления воды движению судна.

Обычно строят две характеристики гребного винта: 1 — при нормальной загрузке судна, 2 — при швартовных испытаниях (рис. 1).

20.06.2017

Принципиальные схемы управления и основные характеристики ГЭУ

Обычно управление ГЭУ постоянного тока осуществляется по системе генератор — двигатель. На пультах управления размещают потенциометрические реостаты, воздействующие на значение и направление тока возбуждения генератора, что приводит к изменению частоты и направления вращения гребного электродвигателя.

Для питания электроэнергией цепей управления и обмоток возбуждения главного генератора и гребного электродвигателя применяют специальные источники постоянного тока — возбудители или выпрямители.

Различают централизованную, индивидуальную и комбинированную системы возбуждения. При централизованной системе цепи возбуждения электрических машин получают питание от независимых возбудителей, не связанных с главным генератором. Преимуществом этой системы является ее надежность, а также возможность ремонта отдельных возбудителей без перерыва питания цепей возбуждения.

17.05.2017

Принципиальные схемы силовых цепей ГЭУ

Схема электрического соединения якорей главных генераторов и гребных электродвигателей называется схемой силовых цепей. Выбор принципиальной схемы силовых цепей зависит от количества генераторов и гребных электрических двигателей, работающих на один гребной вал.

В гребных электрических установках постоянного тока генераторы и двигатели могут независимо работать друг на друга, соединяться последовательно и параллельно, при этом последовательное соединение генераторов предпочтительнее, так так не требует тщательного согласования внешних характеристик. Кроме того, снижение частоты вращения одного из дизелей и вызванное этим уменьшение напряжения его генератора приводит к уменьшению тока, протекающего через генераторы, т. е. второй генератор разгружается, а не перегружается, как это наблюдается при параллельном соединении.

30.10.2015

Схемы главного тока гребных электрических установок

На рис. 1 представлена наиболее типичная схема прохождения главного тока ГЭУ китобойного судна. ГЭУ работает на постоянном токе с применением четырех дизель-генераторов и двухъякорного гребного электродвигателя. Схема предусматривает переменно-последовательное включение якорей генераторов Г1—Г4 и якорей электродвигателя M1, М2. С помощью селекторных переключателей (на схеме их контакты П1—П12), установленных на щите ГЭУ, можно набрать 34 возможных варианта работы.

На рис. 1 схема собрана для работы генераторов Г1, Г2, Г3 на оба якоря электродвигателя. Переключателями можно набрать в схему любое число генераторов (от 1 до 4), причем в любом сочетании. При выходе из строя одного из якорей электродвигателя его можно выключить из схемы и вместо него включить перемычку (на схеме не показана). В таком состоянии можно работать с одним или максимум двумя генераторами в схеме. Набор схемы переключателями производится заранее; при отсутствии тока и на ходу дальнейшее переключение невозможно.

26.09.2015

Электродвижение судов: целесообразность применения гребных электрических установок

Установка, в которой движитель приводится в движение электрическим двигателем, называется гребной электрической установкой (ГЭУ). Приводные двигатели ПМ1, ПМ2 (рис. 1) и генераторы установлены в машинном отделении. Напряжение, вырабатываемое генераторами, по кабелям подается к гребному электродвигателю М, который установлен в кормовой части судна.

Электрически генераторы могут быть соединены параллельно (см. рис. 1, а), но в большинстве случаев их соединяют последовательно (см. рис. 1,б). Часто используют двухъякорные электродвигатели Ml, М2, когда два электродвигателя (см. рис. 1, в) насажены на общий вал.

Схемы защиты и блокировки гребных электрических установок

В ГЭУ применяют виды защит, функции которых те же, что у защит, применяемых в схемах судовых электроприводов, а также некоторые виды специальных защит, рекомендуемых Правилами Регистра (рис. 1).

Для вращения винта гребного электродвигателя ГМ необходимо, чтобы работал приводной двигатель ПМ и на обмотке возбуждения генератора ОВГ и двигателя ОВМ было подано напряжение. Только в этом случае генератор Г возбудится и подаст напряжение на двигатель ГМ.

Обмотки ОВГ и ОВМ коммутируются контакторами возбуждения КВГ и КВМ, которые при наличии питания на выводах В4, В5 срабатывают, если замкнут контакт реле PH. В свою очередь реле PH сработает (при наличии питания на выводах Bl, ВЗ), если замкнуты все контакты защитных устройств, включенные в цепь катушки реле PH, и контакт рукоятки пульта управления ПУ. Рассмотрим функции этих защитных устройств.

07.07.2011

Гребные электрические установки. Особенности электропривода гребных винтов

Кроме механической передачи энергии от главного двигателя к гребному винту, на судах применяется электрическая передача. В этом случае главный двигатель вращает установленный на одном валу с ним электрический генератор. Вырабатываемая им электрическая энергия передается по кабельным сетям к гребному электродвигателю, который соединен непосредственно с гребным винтом. Основной особенностью электропривода гребных винтов является отсутствие жесткой связи между главным двигателем, вращающим генератор, и движителем (винтом), приводимым в движение гребным электродвигателем.

Механическая независимость главного двигателя и движителя создает ряд преимуществ строительного и эксплуатационного характера гребных электрических установок (ГЭУ) по сравнению с механической передачей.

24.04.2011

Литература по автоматизированным гребным электрическим установкам (АГЭУ)

1. Васильев В.Н. Гребные электрические установки. – 2002.
2. Рукавишников С.Б. Автоматизированные гребные электрические установки. – 1983.
3. Сенков Г. И. Судовые энергетические установки, их эксплуатация и ремонт. – 1986.
4. Айзенштадт Е. Б., Гилерович Ю. М., Горбунов Б. А., Сержантов В. В. Гребные электрические установки: Справочник. – 1985.
5. Китаенко Г. И. Справочник судового электротехника в 3 – х томах. – 1980.
6. Акулов Ю.И. Гребные электрические установки. – 1982.
7. Сергиенко Л.И. Электрооборудование морских судов. – 1980.
8. Сержантов В. В., Спешилов В. С. Гребные электрические установки. – 1970.
9. Полонский В.И. Гребные электрические установки. – 1958.