Анализ отказов элементов судовых сетей показал, что значительная часть неисправностей обусловлена понижением электрического сопротивления изоляции. Отказы за счет обрыва токопроводящих жил проводов на водоизмещающих судах составляют 8—10 %.
Большинство отказов в работе электрооборудования возникает вследствие снижения электрического сопротивления изоляции. Основные причины — тепловое старение, повышенная влажность и механические повреждения изоляционного слоя. Электрическое сопротивление является главной оценкой качественного состояния изоляции проводов при их эксплуатации. Самым распространенным прибором для измерения сопротивления изоляции проводов в обесточенном состоянии является мегаомметр.
Значения сопротивления изоляции электрических цепей кабельной сети, измеренного по отношению к корпусу во время испытаний, проводимых после постройки судна или во время освидетельствований, должны быть не менее приведенных в табл. 1.
Измерения выполняют при снятом напряжении, с отключенными и включенными приемниками.
Сопротивление изоляции отдельных участков сети или элементов электрической установки относительно корпуса судна измеряют переносными мегаомметрами типов М-1101, М-1102, БМ-1, БМ-2 магнитоэлектрической системы, развивающими А напряжение 550 В — для цепей с номинальным напряжением до 400 В, 1000 В — для цепей с номинальным напряжением 400 — 1000 В и не менее 2500 В — для цепей с номинальным напряжением более 1000 В.
Мегомметр включают между одним из проводов сети и корпусом судна.
Измеряют сопротивления путей утечки тока каждого провода сети и между токопроводящими жилами. Значение сопротивления изоляции на переносных приборах нужно отсчитывать через 1 мин после приложения рабочего напряжения.
Контроль изоляции можно выполнять во всех изолированных одна от другой судовых трехфазных сетях, находящихся под напряжением. Наиболее просто это осуществлять с помощью ламп, включенных, как показано на рис. 1. Если состояние изоляции всех фаз относительно корпуса одинаково хорошее, то при замыкании контакта кнопочного выключателя S все лампы горят с одинаковым накалом. Если сопротивление изоляции какой-либо фазы уменьшится, то при нажатии кнопочного выключателя накал лампы, подключенной к этой фазе, уменьшится, а накал других ламп увеличится.
Для контроля изоляции в установках переменного тока разработано много различных устройств и приборов. Некоторые из них позволяют вести непрерывный контроль состояния изоляции при наличии и отсутствии напряжения в сети. При снижении сопротивления изоляции ниже допустимого предела подается световой или звуковой сигнал.
Состояние изоляции трехфазной сети переменного тока, находящейся под напряжением, проверяют также наложением постоянного измерительного тока. На рис. 2 изображена схема контроля изоляции трехфазной сети с помощью постоянной составляющей тока утечки на корпус. Электрическое сопротивление изоляции каждой фазы условно показано на схеме резисторами Rиз.
Качественная изоляция трехфазной сети имеет одинаковые (симметричные) сопротивления в каждой фазе. При этом условии потенциал нулевой точки относительно корпуса равен нулю и ток утечки на корпус судна отсутствует. Как только сопротивление какой-либо фазы уменьшится, ток, протекающий через реле контроля К, увеличится, и при достижении установленного значения тока срабатывания реле включает световой сигнал Н. В качестве источника измерительного постоянного тока может служить трансформатор с выпрямителем.
Такое устройство позволяет измерять сопротивление изоляции трехфазных сетей, находящихся под напряжением и без напряжения (рис. 3). Выпрямленный ток протекает через измерительный прибор pΩ, изоляцию трехфазной сети и корпус судна.
Прибор градуируется в омах. Конденсатор С1 и резистор R1 служат для сглаживания пульсаций выпрямленного тока. Последовательно с измерительным прибором включено реле К, которое подает сигнал при достижении установленного значения тока срабатывания. Ток на корпус судна в трехфазных сетях может проходить не только через изоляцию, но и вследствие емкости кабельных сетей С2. Измерительный ток в схеме, приведенной на рис. 3, зависит только от сопротивления изоляции сети. По этому принципу работают установки типа «Электрон», получившие широкое применение на судах.
Непрерывный контроль состояния изоляции в сетях постоянного тока при наличии рабочего напряжения осуществляется с помощью двухобмоточного поляризованного трехпозиционного реле К (рис. 4). При уменьшении сопротивления изоляции провода одного из полюсов в обмотках реле будут разные токи, что приведет к срабатыванию реле.
Следует отметить, что одной из основных причин снижения электрического сопротивления изоляции в судовом электрооборудовании является ее увлажнение. Удаление влаги из изоляции тепловым методом, т. е. высушивание нагревом с помощью тока режима нагрузки или горячим воздухом электроконвекторов, приводит к старению изоляции. В настоящее время широко применяется новый метод удаления влаги из электрической изоляции—электроосмотический метод.
Что такое электроосмос?
Электроосмос - это явление протекания жидкости через пористый материал, например изоляционный, под действием постоянного электрического поля. Подключением положительного полюса источника тока прибора к токопроводящей жиле провода и отрицательного полюса — к корпусу судна или к корпусу электромашины создается постоянное электрическое поле.
В этом случае изоляционный слой провода оказывается под действием этого электростатического поля и в местах утечки тока происходит передвижение заряженных частиц капиллярной жидкости.
Заряженные частицы — ионы увлекают в свое движение в силу наличия трения и межмолекулярного сцепления нейтральные молекулярные слои жидкости. В результате происходит электроосмос - направленное перемещение капиллярной сорбированной влаги от внутренних слоев изоляционного материала к наружным. Результатом этого процесса является высушивание изоляционного слоя, а следовательно, уменьшение токов утечки через изоляцию и соответствующее увеличение ее сопротивления. Электроосмотический перенос сорбированной влаги происходит без повышения температуры изоляционного слоя и только в местах утечки тока. Это является основным отличием от теплового способа сушки изоляции судового электрооборудования.
Приборы типа ЭСКИ (электроосмотическая сушка и контроль изоляции) позволяют без значительных затрат энергии повышать сопротивление изоляции электрооборудования до норм, установленных Правилами Регистра.
Применение в электроизмерительной аппаратуре блоков с логическими элементами позволяет выполнять не только функции контроля технического состояния, но и функции технической диагностики. Способ технического диагностирования состояния изоляции судового электрооборудования осуществляется воздействием на контролируемую изоляцию оперативным током стабилизированного напряжения, и по результатам логической обработки его изменения во времени определяют не только техническое состояние, но и причину появления отказа.
Большинство отказов в работе электрооборудования возникает вследствие снижения электрического сопротивления изоляции. Основные причины — тепловое старение, повышенная влажность и механические повреждения изоляционного слоя. Электрическое сопротивление является главной оценкой качественного состояния изоляции проводов при их эксплуатации. Самым распространенным прибором для измерения сопротивления изоляции проводов в обесточенном состоянии является мегаомметр.
Значения сопротивления изоляции электрических цепей кабельной сети, измеренного по отношению к корпусу во время испытаний, проводимых после постройки судна или во время освидетельствований, должны быть не менее приведенных в табл. 1.
Измерения выполняют при снятом напряжении, с отключенными и включенными приемниками.
Таблица 1. Значения сопротивления изоляции электрических цепей кабельной сети
Сопротивление изоляции отдельных участков сети или элементов электрической установки относительно корпуса судна измеряют переносными мегаомметрами типов М-1101, М-1102, БМ-1, БМ-2 магнитоэлектрической системы, развивающими А напряжение 550 В — для цепей с номинальным напряжением до 400 В, 1000 В — для цепей с номинальным напряжением 400 — 1000 В и не менее 2500 В — для цепей с номинальным напряжением более 1000 В.
Рис. 1. Схема включения ламп накаливания для контроля состояния изоляции трехфазной сети
Мегомметр включают между одним из проводов сети и корпусом судна.
Измеряют сопротивления путей утечки тока каждого провода сети и между токопроводящими жилами. Значение сопротивления изоляции на переносных приборах нужно отсчитывать через 1 мин после приложения рабочего напряжения.
Контроль изоляции можно выполнять во всех изолированных одна от другой судовых трехфазных сетях, находящихся под напряжением. Наиболее просто это осуществлять с помощью ламп, включенных, как показано на рис. 1. Если состояние изоляции всех фаз относительно корпуса одинаково хорошее, то при замыкании контакта кнопочного выключателя S все лампы горят с одинаковым накалом. Если сопротивление изоляции какой-либо фазы уменьшится, то при нажатии кнопочного выключателя накал лампы, подключенной к этой фазе, уменьшится, а накал других ламп увеличится.
Для контроля изоляции в установках переменного тока разработано много различных устройств и приборов. Некоторые из них позволяют вести непрерывный контроль состояния изоляции при наличии и отсутствии напряжения в сети. При снижении сопротивления изоляции ниже допустимого предела подается световой или звуковой сигнал.
Состояние изоляции трехфазной сети переменного тока, находящейся под напряжением, проверяют также наложением постоянного измерительного тока. На рис. 2 изображена схема контроля изоляции трехфазной сети с помощью постоянной составляющей тока утечки на корпус. Электрическое сопротивление изоляции каждой фазы условно показано на схеме резисторами Rиз.
Рис.2. Схема сигнализации о состоянии изоляции в судовых сетях трехфазной системы переменного тока
Качественная изоляция трехфазной сети имеет одинаковые (симметричные) сопротивления в каждой фазе. При этом условии потенциал нулевой точки относительно корпуса равен нулю и ток утечки на корпус судна отсутствует. Как только сопротивление какой-либо фазы уменьшится, ток, протекающий через реле контроля К, увеличится, и при достижении установленного значения тока срабатывания реле включает световой сигнал Н. В качестве источника измерительного постоянного тока может служить трансформатор с выпрямителем.
Такое устройство позволяет измерять сопротивление изоляции трехфазных сетей, находящихся под напряжением и без напряжения (рис. 3). Выпрямленный ток протекает через измерительный прибор pΩ, изоляцию трехфазной сети и корпус судна.
Рис. 3. Схема контроля сопротивления изоляции трехфазной сети
Прибор градуируется в омах. Конденсатор С1 и резистор R1 служат для сглаживания пульсаций выпрямленного тока. Последовательно с измерительным прибором включено реле К, которое подает сигнал при достижении установленного значения тока срабатывания. Ток на корпус судна в трехфазных сетях может проходить не только через изоляцию, но и вследствие емкости кабельных сетей С2. Измерительный ток в схеме, приведенной на рис. 3, зависит только от сопротивления изоляции сети. По этому принципу работают установки типа «Электрон», получившие широкое применение на судах.
Непрерывный контроль состояния изоляции в сетях постоянного тока при наличии рабочего напряжения осуществляется с помощью двухобмоточного поляризованного трехпозиционного реле К (рис. 4). При уменьшении сопротивления изоляции провода одного из полюсов в обмотках реле будут разные токи, что приведет к срабатыванию реле.
Рис.4. Схема контроля состояния изоляции в судовых сетях постоянного тока
Следует отметить, что одной из основных причин снижения электрического сопротивления изоляции в судовом электрооборудовании является ее увлажнение. Удаление влаги из изоляции тепловым методом, т. е. высушивание нагревом с помощью тока режима нагрузки или горячим воздухом электроконвекторов, приводит к старению изоляции. В настоящее время широко применяется новый метод удаления влаги из электрической изоляции—электроосмотический метод.
Что такое электроосмос?
Электроосмос - это явление протекания жидкости через пористый материал, например изоляционный, под действием постоянного электрического поля. Подключением положительного полюса источника тока прибора к токопроводящей жиле провода и отрицательного полюса — к корпусу судна или к корпусу электромашины создается постоянное электрическое поле.
В этом случае изоляционный слой провода оказывается под действием этого электростатического поля и в местах утечки тока происходит передвижение заряженных частиц капиллярной жидкости.
Заряженные частицы — ионы увлекают в свое движение в силу наличия трения и межмолекулярного сцепления нейтральные молекулярные слои жидкости. В результате происходит электроосмос - направленное перемещение капиллярной сорбированной влаги от внутренних слоев изоляционного материала к наружным. Результатом этого процесса является высушивание изоляционного слоя, а следовательно, уменьшение токов утечки через изоляцию и соответствующее увеличение ее сопротивления. Электроосмотический перенос сорбированной влаги происходит без повышения температуры изоляционного слоя и только в местах утечки тока. Это является основным отличием от теплового способа сушки изоляции судового электрооборудования.
Приборы типа ЭСКИ (электроосмотическая сушка и контроль изоляции) позволяют без значительных затрат энергии повышать сопротивление изоляции электрооборудования до норм, установленных Правилами Регистра.
Применение в электроизмерительной аппаратуре блоков с логическими элементами позволяет выполнять не только функции контроля технического состояния, но и функции технической диагностики. Способ технического диагностирования состояния изоляции судового электрооборудования осуществляется воздействием на контролируемую изоляцию оперативным током стабилизированного напряжения, и по результатам логической обработки его изменения во времени определяют не только техническое состояние, но и причину появления отказа.